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Abstract

Multi-tuned vibration absorbers are attractive in reducing vibration and noise over a broadband. Here,
an efficient and robust dynamic reanalysis algorithm is presented for predicting the dynamic response of a
base structure to which are attached multiple absorbers. The ‘reduced eigenvalue method’ uses the modal
analysis results of the base structure without absorbers, computed just once, to obtain the response of the
modified structure. The method presented has two salient features. One is that the resonances of the
modified structure are provided, and can be summed directly to estimate broadband measures of the
dynamic response. The other is that rotatory inertia of the absorbers is properly captured, which has been
found from experiment to be significant when an absorber is attached to a point on the base structure
undergoing rotation. The method is contrasted with the impedance-based approaches. The method is used
to model a three-dimensional absorber on a structure, which has been built, and is shown to correlate with
experiment and full-scale finite element analysis.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Attachment of vibration absorbers to a vibrating plate or shell structure is an effective passive
approach for reducing vibration and/or radiated sound power. The use of a large number of
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distributed absorbers and the desire to evaluate narrow or broadband responses requires an
efficient method for dynamic analysis. Efficiency is even more important if, as is usually necessary,
the absorber parameters must be optimized in an iterative process. An efficient analysis method is
presented here, for harmonically excited structures. A single computation based on the modal
response of the base structure without any absorbers, is used repeatedly to compute the response
of the structure with absorbers. The eigenanalysis of the base structure is independent of
frequency and absorbers. Further efficiency is achieved by using a reduced order model for the
absorbers through assumed deformation modes. A key aspect of the method is that rotatory
inertia of an absorber is taken into account. Motivation for this came from experiments, where it
was noticed that theory and experiment did not match well when an absorber was attached to a
point on the structure that was undergoing significant rotation.

Frahm in 1911 [1] and Ormondroyd and Den Hartog in 1927 [2] presented the original theory
on a single tuned absorber attached to a single-degree-of-freedom system to control response
within a narrow frequency band. Since then, researchers have studied the use of multiple tuned
absorbers attached to multidegree-of-freedom systems [3,4]. Numerical methods for analysis with
multiple absorbers, the focus of this work, may be broadly categorized as ‘impedance’ methods or
‘eigenvalue methods’. In impedance methods, the effect of an absorber is treated as an impedance
(frequency-dependent force) and equations of motion are solved for the velocities at the absorber
attachment points as a function of frequency. In impedance methods, peaks in the response, which
are summed to estimate broadband response, are not directly available. The other category of
methods may be referred to as ‘eigenvalue methods’ where eigenvalues and eigenvectors (modes)
are recalculated for the structure with absorbers. Broadband response is more easily estimated in
this class of methods where peaks occur at the natural frequencies of the modified structure with
absorbers.

In both impedance methods and eigenvalue methods, efficiency is achieved by assuming that the
modes of the base structure without absorbers continue to provide basis functions that represent
the response with absorbers attached. Thus, an eigenvalue analysis of the base structure is done
only once, and is independent of absorber geometry. This is a valid assumption for light-weight
absorbers attached to the structure at a point. In this paper and certain previous publications, the
assumption has been verified by comparison to a full-scale finite element model as well as by
experiment.

Among impedance methods, Neubert’s book [5] provides a good summary of the different
formulations. Level et al. [6] present an efficient technique for inverting the impedance matrix at
harmonic excitation frequencies. In Klasztorny’s approach [7], evaluation of coupling between
absorbers requires a complex eigenvalue analysis of the full structure, thus limiting its usefulness
for repeated reanalysis of large models. A more practical method of analysis of structures with
several tuned absorbers is given by Hamill and Andrew [8] and by Kitis et al. [9]. A modified
version of their approach is used by Constans et al. [10-12]. Kitis et al. [9] assemble the absorber
stiffness and mass matrices directly into the existing (base structure) mass and stiffness matrices,
but truncate the higher modes of the combined structure. The number of degrees of freedom is
then fixed, and from there, the method treats modifications in the same manner as the impedance
method. Huang et al. [13] developed a method for extending the basis shapes of the undamped,
unmodified structure to include additional degrees of freedom. A static analysis is performed to
obtain Ritz vectors that are used to find approximate eigenvalues and eigenvectors for the



M.D. Grissom et al. | Journal of Sound and Vibration 281 (2005) 869-886 871

modified structure. Rice [14] adds the structural modifications as additional degrees of freedom to
the dynamic stiffness after truncating the higher-frequency modes, creating a reduced dynamic
stiffness matrix. This frequency-dependent matrix is then inverted at each frequency to find the
harmonic receptance of the modified structure.

The method proposed here falls in the category of the ‘reduced eigenvalue approach’, where
additional stiffness and mass matrices Ak, Am, representing the absorbers are coupled to the
already available modal response of the base structure. Modal characteristics of the modified
structure are found by solving a reduced-size eigenvalue problem. This approach has been
discussed in the literature with certain limitations. Discussion on static structural analysis is a
simpler case as no additional degrees of freedom are involved (see Ref. [15] for a review). In this
paper, a general technique is given for deriving Ak, Am matrices, and their subsequent integration
with the modal quantities of the base structure. Importantly, rotatory inertia effects of the
attachments are treated in a general manner and a technique requiring smaller dimensional Ak,
Am matrices is presented. Here too, it is assumed that the modes of the base structure continue to
represent response with absorbers attached—however, unlike the impedance approach, additional
degrees of freedom are introduced to properly describe rotatory inertias and couple these to the
base structure. Higher modes of the structure are not truncated in this approach. It is also shown
as to why the reduced eigenvalue approach is more attractive than the impedance approach for
evaluation of broadband frequency response.

A few other techniques can be used to analyze a structure with attachments. The component
mode synthesis approach is often used for large components which have been independently
analyzed for their modal response before combining them. However, this approach is unwieldy
and inefficient for treatment of small low-impedance absorbers attached to the base structure at
one point. Moreover, large numbers of modes are needed in the component mode synthesis
method to obtain accuracy beyond the first few resonances. While several papers exist in the
literature, we refer to a recent paper on this [16].

The various sections in this paper are arranged as follows. Basic analysis using mode
superposition of the base structure without absorbers is first presented. Following this, the
impedance method and difficulty in evaluating broadband response by this class of methods is
discussed. Then, the reduced eigenvalue method of this paper is presented in Sections 5 and 6. This
method is applied to a simple example, and then generalized to treat a three-dimensional absorber
which is then built for experimental purposes. Applications are given in Sections 7-9. In Section 9,
correlation with a full-scale NASTRAN model of the structure with absorbers and experiment is
given.

2. Analysis of base structure (without absorbers)

The first step is to determine the eigenvalues and eigenvectors of the unmodified structure. We
denote @) =matrix whose columns are eigenvectors and Ay =diagonal matrix whose elements are
eigenvalues. A natural frequency in rad/s is obtained from the eigenvalue as w = +/4. Dimension
of the matrix @, is (number of degrees of freedom, number of modes in the basis).

Modal information can be found from a finite element model or from experiment. Here we use
finite elements to determine modal response. The basic equations for this are given below.
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Equations of motion of the forced vibration for a finite element representation of a base
strucure with structural damping are
—w’moX + [ko + inko]X = Fo, (1)

where my, ko, 77, Fg, and X are the mass and stiffness matrices, the material loss factor, and the
complex forcing and response amplitude vectors, respectively, assuming harmonic excitation. If
the forcing vector and damping are set to zero, the normal modes can be found by solving the
eigenvalue problem

ko(Do = }Lomoq)o. (2)
The eigenvectors satisfy
D ko®) = /9, DPymy®, = L. 3)

Using mode superposition, the forced response of the structure can be given as
m .
X =) g8, =, )
=1

where q is a vector of modal ‘participation factors’ or modal ‘coordinates’ given by
) F
—? +(1+ in)&{)}

qj:[ j=1,...,m. ()

T .
At the kth resonance, whence =y, and 2*=w;’, we have q; = @, F/(in/,). Other quantities
such as kinetic energy and radiated sound power can now be computed.

3. Analysis of modified structure by the impedance method

As discussed in the introduction, a few different methods exist for dynamic analysis of the
structure with vibration absorbers attached to it. Of these, the impedance method and the reduced
eigenvalue method are most attractive, since in each of these Eq. (2) is solved only once. We first
discuss the impedance method (see Ref. [12] for further details). The reanalysis problem is
formulated in terms of added impedances as

—o'moX + [ko + inko]X = Fy = Fjy — iwzX, (6)

where F;, is the forcing vector, and z is the local impedance matrix of the modification. The
impedance matrix is diagonal if each modification is independent and discrete as is the case with
simple spring—-mass absorbers. For example, the impedance for a simple mass m takes the
expression z=iwm, and for a spring—mass system with parameters k, m it takes the form z =
iomk /(k — mo?). Replacing F by Fy, — iozX, Egs. (4) and (5) yield

X = @[~ + (1 +in)ig]  ®F (Fip — icwzX). (7)



M.D. Grissom et al. | Journal of Sound and Vibration 281 (2005) 869-886 873

Defining a diagonal matrix A = [—wz + Jo(1 + in)]_l, we can write the local solution
X. = [1+i0®.A072] " ®.AD]F;, @®)

where z. is the matrix of impedances and ®. is the matrix of eigenvectors corresponding only to
(non-zero) impedance locations. Solution to Eq. (8) gives the response only at the impedance
locations, X.. In Eq. (8), only a small p x p matrix, were p is the number of impedance (or
absorber) locations, is inverted for each desired frequency. Response of the modified structure at a
general degree of freedom (as opposed to where an absorber is attached) is obtained by

X = @yq, = PpAD) (Fy — iwzX,,), ©)

where X,,, is the vector of X, found through the equation augmented with zero values at the zero
impedance locations, and q. is the vector of modal coordinates of the modified structure.

The computational procedure may be summarized as follows. Given a set of absorbers with
known locations and parameters, z is first defined. Then, for the specified frequency w, Egs. (8)
and (9) are solved to obtain the displacement amplitude of the base structure X(w). Velocities are
obtained from X = iwX. Other quantities such as kinetic energy of the base structure are readily
determined from the velocities.

4. A disadvantage of the impedance method for estimating broadband response

Two main difficulties exist with the impedance method. One is the derivation of expressions for
impedance, z., that incorporate rotatory inertia of the absorbers (as a result of base rotation). The
other difficulty is as follows. The impedance method yields the response at a specified frequency w.
Peak values of kinetic energy or other performance metric which occur at resonance frequencies
not known a priori are not easily determined. The kinetic energy must be calculated at enough
discrete frequencies that the peaks (or sum of peaks or an integral measure) over the broadband
are accurately captured. The following figure illustrates the difficulty just mentioned. The kinetic
energy of the base structure (shown in Fig. 1) is computed and plotted at various frequencies for
the given resolution. Only a single peak is included in the broadband for illustration. Evaluation
of kinetic energy at equal increments in frequency misses this peak value. For low structural
damping as is generally the case, extremely small steps must be used, and even this may not be
accurate. Noting that small increments means more computation, the problem of determining
broadband response now becomes evident. This problem has not received much attention in the
past as absorbers were used to target only a fixed frequency. Use of distributed tuned absorbers
for broadband energy/sound reduction has exacerbated the problem of determining multiple
response peaks.

We have attempted, with moderate success, a variable step frequency sweep with a response-
dependent resolution, in conjunction with peak refinement based on a Golden section search
strategy. However, there is no way of avoiding repeated evaluations of Egs. (8) and (9). A more
robust method is to involve the direct calculation of the modified structure’s resonance
frequencies, as discussed next.
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Fig. 1. A constant resolution sweep missing a peak: --- , Peak with low damping; —@—, constant resolution sweep.

5. Reduced eigenvalue reanalysis method

As before, let My and K, refer to the mass and stiffness matrices of the base structure without
absorbers. An absorber is described by its own mass and stiffness matrices M, and K,ps. Some
degrees of freedom of these matrices coincide (are shared) with those of base structure where they
are attached, while other degrees of freedom are independent. Thus, the modification mass and
stiffnesses of the absorbers may be partitioned as

Am m, Ak Kk,
Mabs= m;r m. 5 Kabs= kz k. 5 (10)

Z

where Am is the added mass matrix at the shared degrees of freedom, m is the added mass matrix
at the new degrees of freedom, m, is the coupling mass matrix, with similar descriptions for the
stiffness submatrices. The modification element matrices are assembled into the base structure’s
mass and stiffness matrices as

5| Mo +Am m, Xo (1 +ipko + Ak k, Xo Fy
_w ; n ) - . (1)
m, m, X, k, k. X, 0

Z Z

Harmonic excitation, response, and modal superposition as defined for the unmodified structure
1s assumed. As stated earlier, attachment of small vibration absorbers allow us to assume that
response of the base structure with additions can be represented in the original modes. Thus,
modal superposition parallels Eq. (4) for the unmodified structure, but with added terms from the

modifications:
X by 0
xf=lo ixt 2
X, 0 I|(X.
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Eqgs. (11) and (12) is combined to give

,[mo+Am m, (1+1inko + Ak Kk, Dy 0 q Fy
—w . + T = ) (13)

m, m. k, k. 0 I X, 0
Both sides of the equation are pre-multiplied by the modal matrix in Eq. (12), and the result is

simplified by taking advantage of the orthogonality conditions:
) F

(=0} oo

X, 0

Pw

I+ &lAmd, &lm, (1 +inio + ®;AkPy  Dlk,

mE@O m; k;f(p() kz
Eq. (14) can be denoted as
[—sz + K]X —F, (15)
where
5 q
X = . 16
N a0

Eq. (15) involves inverting a smaller matrix. Dimension of X equals 7 number of modes used in
Eq. (4) plus the number of independent degrees of freedom associated with the absorbers.
Solution of X from the above equation can again be obtained using modal superposition. We set

A

F = 0 and solve for the modes from

Ky =M, j=1,... . 17)
We then have
R m Aj
X=> v, (18)
j=1
where
b= (19)
= o |
As in Section 2, we may use orthogonality properties to write the modal response as
§ ¥
= 20
V= oy 20)

where 4, is the (complex) eigenvalue of the modified structure with absorbers. From Eq. (12), we
have X,,, = ®yq, which together with Egs. (16), (18)—(20) yields the response of the base structure
degrees of freedom (i.e., excluding the absorber degrees of freedom) as

X =Y @, (21)
where the modes of the modified system are given by
D, = DD, (22)
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Eq. (21) can be written as
Xy = By [~ + ] " BT (23)

which represents the forced response of the modified base structure.

While the impedance approach discussed earlier only provides X(w), and a search technique is
needed to determine the peak responses, in the reduced eigenvalue approach each peak response is
immediately obtained by setting the real part of 4, = ?, in Eq. (23).

6. An efficient technique for generating absorber matrices, M,,; and K,

Matrices M, and K, represent stiffness and mass properties of the absorbers attached to the
base structure. As evident from Eq. (10), some of the degrees of freedom are shared with the
attachment point while others are additional. While a full scale finite element model of the
absorbers is possible, this will introduce several additional dof. Here, a method is recommended
which involves very few additional dof and in addition includes rotatory inertia effects.

Let q,=[q1, g2, ... g6 " represent the dof of a node on the base structure at an attachment point.
Typically, g1, ¢» , g3 represent translations about x, y, z and g4, ¢s, ¢ represent rotations about x,
v, z. Let q7, gs, ... represent additional dof that adequately describe the deformed states of the
absorber. Note that actual dof numbers will not be 7, 8, ... but will be m+ 1, m+2, ..., where m is
the number of modes used to describe response of the base structure in Eq. (4). Then, we define
¢1(x) to be the motion induced in the absorber material due to prescribed displacements ¢, = 1,

g, =q3 = --- = qg = 0. Similarly, ¢,(x) is defined to be the motion induced in the absorber
material due to ¢; =0, ¢ =1, g3=¢q,=---=¢q3 =0, and finally ¢g(x) is defined to be the
motion induced in the absorber material due to ¢, = ¢, = --- = g5 = ¢; = 0 and gg = 1. Then, the

displacement field within the absorber may be written as u(x) = Zleqid)i(x), from which we can
write the kinetic and strain energy in the absorber, respectively, as

Taps = %qTMabsq and Uabs = %qTKabsq- (24)

Rotatory inertia is automatically included in this formulation. This is because [qs, qs, qe] represent
rotation of the base structure at the attachment point, and the corresponding ¢’s represent the
displacements of the absorber induced by these rotations. Recent experiments have showed us that
rotations are even more significant than translations when absorbers are attached to points on the
base structure that undergo significant rotation (the tip of a cantilever beam is an example). The
expressions in Eq. (24) are derived using familiar finite element shape functions, as illustrated in
the examples below. The examples below also show how the ¢’s may be constructed for a specific
geometry.

7. A simple example

This problem has been solved in Thomson’s book [17] using the ‘component mode synthesis’
method. The greater simplicity of the method in this paper is noticeable. The base structure is
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simply a horizontal beam, and the ‘absorber’ attached to this is a vertical beam (Fig. 2). The base
structure is two-dimensional, and is modeled using two dof.

Construction of ¢; in Fig. 3 follows the discussion in Section 6, and results in only one extra
degree of freedom to the base structure. From elementary beam equations, the following
expressions follow from applying appropriate boundary conditions:

3 2 3 2

yo 3y =3 (y’ Lpy

=1, Gpr=—"5+"F— ¢3:F< )
b

6 2
The displacement of the modification beam is given by

u(y) = 191 + @02 + q395.

The strain energy in the modification beam is
2 T m\2 "o
d? dy $y3dy
Uz%El/ (d_‘2‘> dy or U=%{ qz} EIl I (//2)” I, 2/,32 {qz}
L \dy ) 7| g, 05y, (90 v | Las

which defines the stiffness contributions relating to the dof 2, 3. The mass matrix is evaluated by
considering the kinetic energy of the modification beam

d 2
T=%/ (d—Ltl) dm or Tz%psz/L u? dy
m b

M Beam Modification

/ (*absorber’)

NN

Structure

N
X

Fig. 2. Two-beam structure: EI =10, A =1, p=1, L, = 1.7783.
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Fig. 3. Construction of ¢, for example problem: (a) horizontal base with vertical beam absorber; (b) ¢ with ¢, =1,
¢ =q3="0; () g with ¢; = ¢35 =0, ¢, = 1: (d) ¢3 with ¢; = ¢, =0, ¢; = 1.

which can be reduced to

1 : 2 :
T= 3 q, ppA 0 be P> dy be Prp3dy q>
q;3 0 be $rp5dy be ‘/)g dy qs3

which defines the mass contributions. The terms of the element mass and stiffness matrices are
either integrated using (six-point) Gaussian quadrature or in closed form. The additional stiffness
and mass matrices corresponding to the modification/absorber beam are

SET 0 0 0 0 0 0
Kaps = 553 0 L*> L|=|0 168702 9.4868 |,
0 L 1 0 9.4868 5.3348
840 0 0 1.7783 0 0
pAL )
abs = o7 0 16L~ -33L| = 0 0.1071  —0.1242
0 —33L 198 0 —0.1242  0.4192

Comparison of the first two natural frequencies of the two-beam system are given in Table 1.
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Table 1
Comparison of the first two natural frequencies of the two-beam system

Reduced eigenvalue CMS [17] ANSYS
Ist frequency 1.173 1.172 1.170
2nd frequency 3.213 3.198 3.200

8. M, and K., matrices for a three-dimensional single-beam absorber

The broadband vibration absorber or ‘BBVA’ used in the next section (shown in Fig. 4) is
constructed by assembling multiple, single-beam absorbers of the type discussed now (Fig. 5). The
single-beam absorber is comprised of a rigid base, of height L,, a flexible beam of length L, and a
mass at the end of the beam. The absorber is rigidly attached to the base structure at point ‘A’,
and the six ‘local’ dof of the absorber at that point are shared with the base structure. The system
is defined in terms of the six shared degrees of freedom, and only two additional dof per beam.
Thus, the reduced eigenvalue reanalysis method is very effective.

The motion u(&) of any location & on the modification is expressed in terms of basis shapes and the
degrees of freedom shown in Fig. 5, as

8
W& =Y qihi(9). (25)
i=1

As in the previous simple example, rotatory inertia of the absorbers are automatically included
since base structure rotations ¢4, ¢s, and ge couple with the other dof. The eight basis shapes are
shown in Figs. 6 and 7.

Numerically, three different shapes are used to represent the flexible displacement of the beam
portion of the absorber. The basis shapes must satisfy the boundary conditions for the absorber,
and the beam is clamped at the rigid link. The clamped deflection due to a unit displacement at ¢,
and zero slope at the rigid link, v, is used in ¢,, ¢, and ¢y:

3x? X
X)=——5+-—5+1
l:bl( ) 2L2 2L3
The deflection due to a unit rotation at gs, ¥, 1s used in ¢5 and ¢g:
x> 3x?
TR T

The deflection due to a unit displacement at g7, Y5, is used in ¢, and ¢g:

x3 3x2
+ -

l//3(X): _E 22
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Fig. 4. Four-beam absorber with end masses attached to a foam supported aluminum beam.

@) (b)

©

Fig. 5. Single-beam absorber with local degrees of freedom indicated; (a) X'y’ view; (b) 'z view; () x'z’ view.

It is noted that rotation g4 leads to a motion L, ¢4 at the top of the stub. This is considered while
defining ¢,. Also, the rigid stub does not contribute any stiffness, but does contribute to the mass
matrix.

The kinetic energy can be expressed in matrix form in terms of the participation degrees of
freedom and the basis shapes, as 7 = %aﬂzl.piA,- fiu(éj)2 d¢, which gives an expression for the

mass matrix, M ]’.,k => piAi fl.q')jqﬁk dé. Likewise, the element stiffness matrix izs determined by
2
considering the strain energy of the single beam absorber as U = %EI J ¢ (%;P) d¢ which yields
d’¢; d2¢
1= EI [, (?f) dé.
The element stiffness and mass matrices are defined by simple polynomials, and the integrals are

evaluated analytically. Guyan reduction with some care can be used to verify the resulting
matrices.
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Fig. 6. Basis shapes 14 for the single-beam absorber geometry: (a) ¢; (b) ¢; (c) ¢3; (d) Py
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Fig. 7. Basis shapes 5-8 for the single-beam absorber geometry; (a) ¢s; (b) ¢g; (¢) P75 (d) Ps.
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To model the absorber in Fig. 4, each single-beam absorber stiffness and mass must be
transformed into global coordinates, prior to being assembled. This is done readily as

k=LKL, m=L"m'L
where

R
L= R ;
I

R is the well-known direction cosines matrix, and I is a 2 x 2 identity matrix.

9. Structural application

The beam-type absorber in Fig. 4 is now applied to a structure. The structure is also a beam and
is modeled using shell finite elements. A simple structure is chosen in order to verify the approach
in this paper with experiments.

The first step is to determine modes of the structure without absorbers, viz. ®,. This is done
using NASTRAN. The beam (structure) dimensions are 50.80 cm x 5.08 cm x 0.65cm. To obtain
nearly free—free boundary conditions, the beam is supported with a very compliant foam at two
locations indicated in Fig. 8. Each foam support is modeled as a set of five 856 N/m springs
applied across the width of the beam. The spring stiffness was chosen to match the first rigid body
mode of the beam with the foam supports. Young’s modulus of the beam is 6.70 x 10'°N/m?, and
the density is 2713kg/m>. The finite element mesh of the unmodified beam consists of 640
quadrilateral plate elements, and 10 spring elements to model the foam supports.

The beam structure is subject to a unit force, across the frequency band, located at 0.64 cm from
one end of the beam. The response is calculated/measured at a point 6.35 cm from the other end of
the beam.

39.37 ¢cm

11.43 cm

4,’ Foam Supports

5.08 cm E‘\‘*
£

6.35 cm

50.80 cm

~x

Fig. 8. Finite element model of the beam (absorber and foam supports are shown).
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Fig. 9. Numerical and experimental mobility response comparison of the unmodified beam (without absorber): —@-,
NASTRAN, @, reduced eigenvalue method; —, experimental.

The mobility response between the force location and the response location, for the structure
without absorbers, is shown in Fig. 9. Experimentally, this excitation is realized with an
instrumented impact hammer, and the response is measured with a laser velocimeter.

The four-beam absorber modification that was shown in Fig. 4 is then attached to the beam
structure (Fig. 8). The absorber consists of a 0.5cm rigid link (‘stub’) normal to the surface, a
beam (‘spoke’) modeled with five beam elements, and an 8.5 g mass at the free end. The Young’s
modulus of the spoke material is 1.00 x 10° N/m?, and the density is 1100 kg/m?>. The loss factor of
the material was found experimentally by the half-power method on a test sample. The spokes are
assumed to be uniform tubes with circular cross-sections, with each cross-sectional area equal to
1.52 x 107> m?, and a moment of inertia of 8.01 x 10~'' m*. The absorber characteristics including
the first natural frequency of each beam are given in Table 2. The relative orientation of the
absorbers to each other and the beam is shown in Fig. 8.

The reduced eigenvalue approach in this paper is now verified, by comparing the mobility
frequency response with both NASTRAN and experiment. The mobility response is calculated/
measured at the four-beam absorber attachment location. NASTRAN calculations are based on a
full finite element model where the beam structure and absorber (with stub, spokes, end-mass) are
all modeled with finite elements. Fig. 10 shows agreement between the three methods. Capturing
the rotatory inertia of the absorbers is necessary for this correlation. The deviation between the
experimental and numerical results can be attributed to small variations in the absorber material
properties especially the loss factors. Fig. 10 also shows the ill-effect of ignoring rotatory inertia of
the absorbers simulated by ignoring coupling between base rotational dof and the absorber. It is
noted that the reduced eigenvalue method is considerably faster than the NASTRAN analysis.
Both methods solve the eigenvalue problem. The size of the NASTRAN inversion is equal to the
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Table 2
Four-beam absorber characteristics
Mass (g) Damping (1) Frequency (Hz) Length (cm)
1 8.5 0.03 125.0 3.56
2 8.5 0.03 133.0 3.43
3 8.5 0.03 122.0 3.064
4 8.5 0.03 128.0 3.52
10 T T
10° 3
:
s
10-4 L -
107 1 1
50 100 150 200
Fig. 10. Numerical frequency response comparison with a four-beam absorber: @ (red), NASTRAN, --- (blue),
experimental; — (black), reduced eigenvalue method; - - - - (green), without rotational components.

total number of degrees of freedom. The size of the reduced eigenvalue problem is the number of
mode shapes plus two times the number of absorbers which is on the order of 100 times smaller
than NASTRAN for the example above.

10. Conclusions

An efficient and robust dynamic reanalysis algorithm based on a reduced eigenvalue approach
is presented for predicting the dynamic response of a base structure to which are attached multiple
absorbers. In this approach, resonances of the modified structure are provided, and can be
summed directly to estimate broadband measures of the dynamic response. Further, rotatory
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inertia of the absorbers is properly captured, which has been found from experiment to be
significant when an absorber is attached to a point on the base structure undergoing rotation. The
method is contrasted with the impedance-based approaches. The method is used to model a three-
dimensional absorber on a structure, which has been built, and is shown to correlate with
experiment and full-scale finite element analysis. This approach is efficient within an iterative
optimization process or for Monte Carlo simulations.
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